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Empirical Inference of Underlying Condition Probabilities Using
Synthea-Generated Synthetic Health Data

Abstract: Diagnosing an ailment is essentially a Bayesian problem; a doctor only knows
what she can observe and must use this information to infer the patient’s condition.
We provide a prototype implementation that uses Synthea-generated synthetic electronic
health records (EHRs) to study the complicated relationships between sets of symptoms
and the likelihoods of possible underlying causes. Our goal is to determine the most likely
patient pathologies based on a given set of observed symptoms and patient demographics.
We apply two distinct methods aimed at achieving this goal. Our first method relies on
a strictly empirical analysis of synthetic EHRs to obtain posterior pathology probabili-
ties. Our second approach uses the synthetic EHRs to populate probability distribution
functions in a graph-based machine learning model. We give a qualitative and quantita-
tive comparison of these two methods. Finally, we show how we validated these models,
demonstrate how they can be used as a mechanism for validating the outputs of Synthea,
and suggest promising research applications of the methods we have proposed.

Github: https://github.com/teterholdings/Synthea Symptoms
YouTube: https://youtu.be/2zDTzIEhZ4g

1 Overview

Patient diagnosis is fundamental to good health care. In this research effort, we investigate a
Bayesian approach to patient diagnosis, using data generated by Synthea. Our immediate goal is
to construct models that input a set of symptoms, and based on a large set of synthetic EHRs,
output the set of most likely causes. This analytic workflow is similar to how a doctor might arrive
at a diagnosis: he mentally follows a flow model based on his understanding of the most probable
causes of the symptoms he observes. Analysis of the statistical distributions of symptoms and
diseases in Synthea data could assist in validating the diagnosis work flows used in practice and
add mathematical rigor to the intuition doctors develop through education and experience. The
methods we employ could be extended to include other relationships in Synthea data in order to
gain insights that generalize to a wide variety of applications.

Simulations like Synthea can be used to investigate the probabilistic relationships for which exact
analytic derivations are intractable. Synthea [Walonoski et al., 2018] consists of a configurable set
of modules, each of which stochastically generates medical conditions and associated symptoms.
For example, a patient under 18 years old has a 0.5% chance of developing bronchitis each month,
and given the patient has developed bronchitis, the conditional probability the patient develops a
fever is 1 [Synthea Developers, 2018]. The probabilities encoded in Synthea’s modules are based
on known characteristics and incidence rates of various pathologies and conditions.

It somewhat difficult, however, to analytically determine the combined probability that a patient
develops a fever for any reason. It requires even more work to determine the conditional (posterior)
probability, given the patient has a fever, that the underlying cause is bronchitis. The analysis
gets even more complicated if we also account for symptom severity, patient demographics, or
other factors. Figure 1 depicts a simple conditional probability diagram for the “Fever” and ”Body
aches” symptoms associated with just two of the Synthea modules. The figure includes the severity
distributions for the depicted symptoms, where U denotes the uniform distribution. Synthea’s
workflows essentially move from left to right in Figure 1 to generate pathologies and then symptoms.
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Figure 1: Conditional probability diagram for select symptoms related to bronchitis, sinusitis, and
sore throat.

Our task (and the task of doctors diagnosing patients) is to infer the pathology from the symptoms
and severities, working instead from the right side of Figure 1 to the left.

2 Methods

We introduce and implement two techniques for using Synthea data to find posterior probabilities
for pathologies, given a set of symptoms and basic patient demographics. The first method is to
use Synthea’s output to perform a strictly empirical Bayesian analysis. The second method applies
graphical models from machine learning literature (see, e.g., [Bishop, 2013, pp 359–383]) to obtain
similar, but potentially more generalizable results.

2.1 Empirical Bayesian Analysis

Suppose we have a notional 5 year old female patient presenting with a fever, and we want to know
the potential underlying pathologies and their associated probabilities. Using a large set of Synthea-
generated “symptoms” records, we can query those that contain the ”fever” symptom for a 5 year
old female, and from this subset investigate the different underlying causes and their associated
frequencies. Figure 2 depicts the posterior probabilities of the five most likely pathologies (out of
ten total) that result from applying this method on a set of 5000 Synthea-generated patients.

What about the severity of the fever? Again we can use Synthea data to perform an empirical
analysis. Figure 3 shows the empirically derived conditional probability density functions associated
with each of the most likely pathologies for the “Fever” symptom. Notice that neither “Viral
sinusitis” nor “Acute bacterial sinusitis” are likely to produce a fever with severity level higher
than 25 (per Synthea’s severity encoding), while “Acute bronchitis” is unlikely to produce a fever
with a low severity. If we had additional information on the severity of the fever, we could use this
analysis to provide additional insights, and further update posterior probabilities.

There is some risk, however, of obtaining too few results when using this strictly empirical Bayes
analysis method. A query for records of a 5 year old girl with a fever resulting from “Sinusitis (dis-

2



Figure 2: The five most common pathologies presenting the “Fever” symptom, and their associated
probabilities.

Figure 3: Fever severity distributions for most likely pathologies.

order)” returns only 18 results out of 315,729 rows in our underlying Synthea-generated symptoms
data. To generate the fever severity density function plotted in Figure 3 from these 18 points,
we used a k-nearest neighbor algorithm and normalized the resulting function so that it summed
to one. The Bayesian network approach described in the next section mitigates this problem by
decoupling some of the variables in the analysis.

2.2 Bayesian Network Analysis

This section builds on the empirical analysis discussed in the previous section, but employs a model
that is easier to generalize. As discussed, the strictly empirical analysis in the previous section can
result in small sample sizes of limited utility. We can overcome this limitation by making some
assumptions on the dependencies between the variables we are analyzing. Our assumptions are cap-
tured in the Bayesian network [Bishop, 2013, pp. 360–383] model depicted in Figure 4(a), in which
the directed edges imply probabilistic dependence between two variables. If two variables (repre-
sented as nodes in Figure 4(a)) are not connected by an edge, they are conditionally independent,
i.e., they become independent when the values for the nodes between them are known.

For example, we assume that pathology probabilities depend on a patient’s age and gender,
but symptoms and symptom severities (abbreviated as Sx and Vx in Figure 4(a), respectively) do
not depend on age and gender once the pathology is known. Of course there are cases where this
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assumption does not hold, but it provides a useful simplification for the reasons discussed.
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(a) Bayesian network. (b) Factor graph.

Figure 4: Bayesian network model (a) and corresponding factor graph (b).

We implemented the Bayesian network as a factor graph [Bishop, 2013, pp. 399–402], as depicted
in Figure 4(b), to support efficient analysis, where factors are depicted as rectangular nodes and
variables are circular. The factor functions are:

• GAP: f(g, a, p) = p(g, a, p), i.e., the joint probability of a gender-age-pathology (g, a, p) com-
bination, empirically derived from Synthea-generated data.

• PSSi: f(p, si, vi) = p(si|p)p(vi|si, p), i.e., the joint probability of a symptom-severity (si, vi)
combination conditioned on pathology p, empirically derived from Synthea-generated data.

We can fix any subset of the variables in the factor graph and efficiently compute the conditional
probability distributions for the remaining variables using the sum-product algorithm [Bishop, 2013,
pp.402–411].

Using the Bayesian network method to investigate the likely causes for a 5 year old female with
a fever produces the same results shown in Figure 2. This result is not surprising, as our Bayesian
network model captures the dependencies between age, gender, and pathology. However, the fever
severity plot (Figure 5) is smoother because, as a result of the decoupling induced by conditional
independence, it makes use of all instances of fever in the data, and not only those in 5 year old
females.

3 Implementation and Performance

We provide a minimal application (https://github.com/teterholdings/Synthea Symptoms) that en-
ables a user to select a set of symptoms, a patient age, patient gender, and the analysis method
(empirical or Bayesian network). The application executes the selected method to find the most
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Figure 5: Bayesian network fever severity distributions.

likely pathologies and associated posterior probabilities. Selected symptoms and resulting patholo-
gies can be analyzed in more detail by following subsequent links. In each case, the application
carries out all of the analyses using the selected method. When multiple symptoms are selected,
the app conducts the analysis assuming all symptoms are simultaneously present and result from
the same underlying cause. As a result, many combinations of symptoms return no results because
they are unlikely to occur together due to a single pathology.

The Bayesian network analyses take about 1-3 minutes, which is considerably longer than the
empirical analysis of Section 2.1 because of the computational resources required to build the factor
graph and propagate the sum-product algorithm to all nodes.

4 Validation

We provide two perspectives on validation. First, we investigate whether our models, and specif-
ically our factor graph implementation, are correctly capturing the marginals in the underlying
data. The second, more important aspect of validation deals with the underlying data and checks
on the overall utility of using Synthea data in this way.

4.1 Factor Graph Validation

Because the sum-product algorithm requires careful curation of processing and memory, we devel-
oped some simple tests to validate its performance. If we fix any combination of variables in the
graph, the marginal probabilities for each of the remaining variables should sum to the frequency
of that combination in the underlying Synthea data. For example, suppose we fix the “Gender”
variable in the factor graph (Figure 4(b)) to be male. After running the sum-product algorithm,
the sum of the marginal probabilities for any other node (e.g., “Cough” symptom) should equal
the fraction of the underlying data for which the patient gender is male. The Github repository
includes a python test script, test bayesian graph.py, that executes this test and several others
that are similar.
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4.2 Validating this Application of Synthea Data

Validation of this application essentially constitutes a validation of the distributions of the symp-
toms and pathologies generated by Synthea. There are many authoritative references that provide
likely underlying pathologies based on sets of symptoms, from medical texts to web applications.
For this effort, we limit our validation to the use of the popular WebMD [WebMD, LLC, 2005-2021]
web application, which inputs a set of symptoms and outputs likely pathologies. For the purpose
of demonstration, we return to our notional 5 year old female, who is suffering from a fever. Table
1 compares the five most likely pathologies for this notional patient obtained from WebMD against
the Synthea-based Bayesian model.

WebMD Synthea Bayes

Bacterial Pneumonia Viral sinusitis (disorder)
Middle Ear Infection Acute bronchitis (disorder)
Viral Pneumonia Acute viral pharyngitis (disorder)
Influenza (Flu) Child Streptococcal sore throat (disorder)
Strep Throat Sinusitis (disorder)

Table 1: Comparison of WebMD and Synthea pathologies for a 5 year old female with a fever.

Investigating the Synthea output for the top WebMD results, pneumonia and middle ear in-
fection (Otitis media), immediately reveals the reason behind the discrepancies between these two
lists: the Synthea pneumonia and Otitis media modules do not output any symptoms!

5 Utility & Recommendations

A primary near-term use for the methods we present is to validate Synthea’s performance against
authoritative sources (e.g., WebMD). From our analyses we have found some inconsistency in the
way Synthea modules have been written and implemented. These inconsistencies cascade into
inconsistent outputs that degrade the value of the synthetic data. Synthea modules would benefit
from a major refactoring and deliberate standardization going forward, using the methods in this
paper as verification that the symptoms outputs conform with known diagnosis workflows.

Initializing Bayesian machine learning models with empirical distributions from synthetic health
records is a novel use of Synthea data that could provide insights in many applications. The
Bayesian network model we presented can extend beyond the variables and demographics that
we included. It could be used to analyze more detailed patient demographics, labs and results,
medications, pre-existing conditions, and insurance information, all of which are already included
in Synthea outputs. In our current implementation, a researcher could use the model to look at
likely causes for complex sets of symptoms, obtaining insights into multiple diagnosis trajectories
in the face of uncertainty. Exploration of this nature could account for various patient preferences,
contributing to patient-centered outcomes research.

This research could also give valuable insights into the relative benefits of different inquiry paths.
Determining the actual value of any variable in the Bayesian network takes some amount of effort
or resources. Age and gender are easy to determine. Determining symptoms and severities could
require tools, time, facilities, or specialists. The Bayesian models we prototype could quantify the
expected reduction in uncertainty that would come from conducting a certain inquiry to determine
the value of a variable in the network, providing a measure of “return on investment” for a given
test. These methods can make use of the standard “perfect” care trajectories written into the
Synthea module to investigate complex care situations where perfect information isn’t available.
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